Probing complex RNA structures by mechanical force.

نویسندگان

  • S Harlepp
  • T Marchal
  • J Robert
  • J-F Léger
  • A Xayaphoummine
  • H Isambert
  • D Chatenay
چکیده

RNA secondary structures of increasing complexity are probed combining single molecule stretching experiments and stochastic unfolding/refolding simulations. We find that force-induced unfolding pathways cannot usually be interpreted by solely invoking successive openings of native helices. Indeed, typical force-extension responses of complex RNA molecules are largely shaped by stretching-induced, long-lived intermediates including non-native helices. This is first shown for a set of generic structural motifs found in larger RNA structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA, which exhibits a surprisingly well-structured and reproducible unfolding pathway under mechanical stretching. Using out-of-equilibrium stochastic simulations, we demonstrate that these experimental results reflect the slow relaxation of RNA structural rearrangements. Hence, micromanipulations of single RNA molecules probe both their native structures and long-lived intermediates, so-called "kinetic traps", thereby capturing -at the single molecular level- the hallmark of RNA folding/unfolding dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Compositional Imaging of Heterogeneous Materials with Atomic Force Microscopy

Distinguishing of individual constituents in complex materials is one of the primary tasks of microscopy that is achieved by visualization of specific shapes and features of components. Electron microscopy and atomic force microscopy (AFM) [1] extend visualization of objects down to the atomic scale thus enhancing compositional imaging. The situation becomes less trivial when the constituents l...

متن کامل

Mechanical unfolding of RNA: from hairpins to structures with internal multiloops.

Mechanical unfolding of RNA structures, ranging from hairpins to ribozymes, using laser optical tweezer experiments have begun to reveal the features of the energy landscape that cannot be easily explored using conventional experiments. Upon application of constant force (f), RNA hairpins undergo cooperative transitions from folded to unfolded states whereas subdomains of ribozymes unravel one ...

متن کامل

Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.

Mechanical unfolding and refolding of single RNA molecules have previously been observed in optical traps as sudden changes in molecular extension. Two methods have been traditionally used: "force-ramp", with the applied force continuously changing, and "hopping". In hopping experiments the force is held constant and the molecule jumps spontaneously between two different states. Unfolding/refol...

متن کامل

Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA.

RNA unfolding and folding reactions in physiological conditions can be facilitated by mechanical force one molecule at a time. By using force-measuring optical tweezers, we studied the mechanical unfolding and folding of a hairpin-type pseudoknot in human telomerase RNA in a near-physiological solution, and at room temperature. Discrete two-state folding transitions of the pseudoknot are seen a...

متن کامل

Understanding in-line probing experiments by modeling cleavage of nonreactive RNA nucleotides.

Ribonucleic acid (RNA) is involved in many regulatory and catalytic processes in the cell. The function of any RNA molecule is intimately related with its structure. In-line probing experiments provide valuable structural data sets for a variety of RNAs and are used to characterize conformational changes in riboswitches. However, the structural determinants that lead to differential reactivitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2003